35 research outputs found

    Geophysical Signatures of Disseminated Iron Minerals: A Proxy for Understanding Subsurface Biophysicochemical Processes

    Get PDF
    Previous studies have linked biogeophysical signatures to the presence of iron minerals resulting from distinct biophysicochemical processes. Utilizing geophysical methods as a proxy of such biophysicochemical processes requires an understanding of the geophysical signature of the different iron minerals. Laboratory experiments were conducted to investigate the complex conductivity and magnetic susceptibility signatures of five iron minerals disseminated in saturated porous media under variable iron mineral content and grain size. Both pyrite and magnetite show high quadrature and inphase conductivities compared to hematite, goethite, and siderite, whereas magnetite was the highly magnetic mineral dominating the magnetic susceptibility measurements. The quadrature conductivity spectra of both pyrite and magnetite exhibit a well-defined characteristic relaxation peak below 10kHz, not observed with the other iron minerals. The quadrature conductivity and magnetic susceptibility of individual and a mixture of iron minerals are dominated and linearly proportional to the mass fraction of the highly conductive (pyrite and magnetite) and magnetic (magnetite) iron minerals, respectively. The quadrature conductivity magnitude increased with decreasing grain size diameter of magnetite and pyrite with a progressive shift of the characteristic relaxation peak toward higher frequencies. The quadrature conductivity response of a mixture of different grain sizes of iron minerals is shown to be additive, whereas magnetic susceptibility measurements were insensitive to the variation in grain size diameters (1-0.075 mm). The integration of complex conductivity and magnetic susceptibility measurements can therefore provide a complimentary tool for the successful investigation of in situ biophysicochemical processes resulting in biotransformation or secondary iron mineral precipitation

    The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales

    Get PDF
    Geophysics provides a multi-dimensional suite of investigative methods that are transforming our ability to see into the very fabric of the subsurface environment, and monitor the dynamics of its fluids and the biogeochemical reactions that occur within it. Here, we document how geophysical methods have emerged as valuable tools for investigating shallow subsurface processes over the past two decades and offer a vision for future developments relevant to hydrology and also ecosystem science. The field of “hydrogeophysics” arose in the late 1990s, prompted, in part, by the wealth of studies on stochastic subsurface hydrology that argued for better field-based investigative techniques. These new hydrogeophysical approaches benefited from the emergence of practical and robust data inversion techniques, in many cases with a view to quantify shallow subsurface heterogeneity and the associated dynamics of subsurface fluids. Furthermore, the need for quantitative characterization stimulated a wealth of new investigations into petrophysical relationships that link hydrologically relevant properties to measurable geophysical parameters. Development of time-lapse approaches provided a new suite of tools for hydrological investigation, enhanced further with the realization that some geophysical properties may be sensitive to biogeochemical transformations in the subsurface environment, thus opening up the new field of “biogeophysics”. Early hydrogeophysical studies often concentrated on relatively small ‘plot-scale’ experiments. More recently, however, the translation to larger-scale characterization has been the focus of a number of studies. Geophysical technologies continue to develop, driven, in part, by the increasing need to understand and quantify key processes controlling sustainable water resources and ecosystem services

    Resistivity and self-potential tomography applied to groundwater remediation and contaminant plumes: Sandbox and field experiments

    Get PDF
    Geophysical methods can be used to remotely characterize contaminated sites and monitor in situ enhanced remediation processes. We have conducted one sandbox experiment and one contaminated field investigation to show the robustness of electrical resistivity tomography and self-potential (SP) tomography for these applications. In the sandbox experiment, we injected permanganate in a trichloroethylene (TCE)-contaminated environment under a constant hydraulic gradient. Inverted resistivity tomograms are able to track the evolution of the permanganate plume in agreement with visual observations made on the side of the tank. Self-potential measurements were also performed at the surface of the sandbox using non-polarizing Ag-AgCl electrodes. These data were inverted to obtain the source density distribution with and without the resistivity information. A compact horizontal dipole source located at the front of the plume was obtained from the inversion of these self-potential data. This current dipole may be related to the redox reaction occurring between TCE and permanganate and the strong concentration gradient at the front of the plume. We demonstrate that time-lapse self-potential signals can be used to track the kinetics of an advecting oxidizer plume with acceptable accuracy and, if needed, in real time, but are unable to completely resolve the shape of the plume. In the field investigation, a 3D resistivity tomography is used to characterize an organic contaminant plume (resistive domain) and an overlying zone of solid waste materials (conductive domain). After removing the influence of the streaming potential, the identified source current density had a magnitude of 0.5 A m-2. The strong source current density may be attributed to charge movement between the neighboring zones that encourage abiotic and microbially enhanced reduction and oxidation reactions. In both cases, the self-potential source current density is located in the area of strong resistivity gradient

    Self-Potential Signals Generated by the Corrosion of Buried Metallic Objects with Application to Contaminant Plumes

    Get PDF
    Large-amplitude (\u3e100 mV) negative electric (self)-potential anomalies are often observed in the vicinity of buried metallic objects and ore bodies or over groundwater plumes associated with organic contaminants. To explain the physical and chemical mechanisms that generate such electrical signals, a controlled laboratory experiment was carried out involving two metallic cylinders buried with vertical and horizontal orientations and centered through and in the capillary fringe within a sandbox. The 2D and 3D self-potential (SP) data were collected at several time steps along with collocated pH and redox potential measurements. Large dipolar SP and redox potential anomalies developed in association with the progressive corrosion of the vertical pipe, although no anomalies were observed in the vicinity of the horizontal pipe. This discrepancy was due to the orientation of the pipes with the vertical pipe subjected to a significantly larger EH gradient. Accounting for the electrical conductivity distribution, the SP data were inverted to recover the source current density vector field using a deterministic least-squares 4D (time-lapse) finite-element modeling approach. These results were then used to retrieve the 3D distribution of the redox potential along the vertical metallic cylinder. The results of the inversion were found to be in excellent agreement with the measured distribution of the redox potential. This experiment indicated that passively recorded electrical signals can be used to nonintrusively monitor corrosion processes. In addition, vertical electrical potential profiles measured through a mature hydrocarbon contaminated site were consistent with the sandbox observations, lending support to the geobattery model over organic contaminant plumes

    High-Resolution Magnetic Susceptibility Measurements for Investigating Magnetic Mineral Formation during Microbial Mediated Iron Reduction

    Get PDF
    Disimilatory iron-reducing bacteria play an important role in the reduction of Fe(hydr)oxides and the production of secondary solid-iron mineral phases that can have magnetic properties. Magnetic susceptibility can therefore play an important role in identifying zones where microbial-mediated iron reduction is occurring. We investigated the magnetic susceptibility variations in a hydrocarbon-contaminated aquifer where methanogenesis and iron reduction are the main biogeochemical processes. Our objectives are to (1) determine the variability of magnetic susceptibility, (2) determine the hydrobiogeochemical controls on the magnetic susceptibility variability, and (3) evaluate the use of magnetic susceptibility as a viable technique for identifying zones where the coupling of iron and organic carbon cycling is occurring. Magnetic susceptibility data were acquired down 11 boreholes within contaminated and uncontaminated locations. We show that magnetic susceptibility values for boreholes within the free phase plume are higher than values for boreholes within the dissolved phase plume and background. Magnetic susceptibility values are highest within the zone of water table fluctuation with peaks predominantly occurring at the highest water table marks and are also coincident with high concentrations of dissolved Fe(II) and organic carbon content, suggesting that the zone of water table fluctuation is most biologically active. High magnetic susceptibility values within the vadose zone above the free phase plume are coincident with a zone of methane depletion suggesting aerobic or anaerobic oxidation of methane coupled to iron reduction. Our results suggest that magnetic susceptibility can be used as a viable tool in iron and carbon cycling studies

    Field-Scale Observations of a Transient Geobattery Resulting from Natural Attenuation of a Crude Oil Spill

    Get PDF
    We present evidence of a geobattery associated with microbial degradation of a mature crude oil spill. Self-potential measurements were collected using a vertical array of nonpolarizing electrodes, starting at the land surface and passing through the smear zone where seasonal water table fluctuations have resulted in the coating of hydrocarbons on the aquifer solids. These passive electrical potential measurements exhibit a dipolar pattern associated with a current source. The anodic and cathodic reactions of this natural battery occur below and above the smear zone, respectively. The smear zone is characterized by high magnetic susceptibility values associated with the precipitation of semiconductive magnetic iron phase minerals as a by-product of biodegradation, facilitating electron transfer between the anode and the cathode. This geobattery response appears to have a transient nature, changing on a monthly scale, probably resulting from chemical and physical changes in subsurface conditions such as water table fluctuations

    Magnetic Susceptibility As a Proxy for Investigating Microbially Mediated Iron Reduction

    Get PDF
    We investigated magnetic susceptibility (MS) variations in hydrocarbon contaminated sediments. Our objective was to determine if MS can be used as an intrinsic bioremediation indicator due to the activity of iron-reducing bacteria. A contaminated and an uncontaminated core were retrieved from a site contaminated with crude oil near Bemidji, Minnesota and subsampled for MS measurements. The contaminated core revealed enriched MS zones within the hydrocarbon smear zone, which is related to iron-reduction coupled to oxidation of hydrocarbon compounds and the vadose zone, which is coincident with a zone of methane depletion suggesting aerobic or anaerobic oxidation of methane is coupled to iron-reduction. The latter has significant implications for methane cycling. We conclude that MS can serve as a proxy for intrinsic bioremediation due to the activity of iron-reducing bacteria iron-reducing bacteria and for the application of geophysics to iron cycling studies

    Improved hydrogeophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar traveltime data.

    Get PDF
    Appropriate regularizations of geophysical inverse problems and joint inversion of different data types improve geophysical models and increase their usefulness in hydrogeological studies. We have developed an efficient method to calculate stochastic regularization operators for given geostatistical models. The method, which combines circulant embedding and the diagonalization theorem of circulant matrices, is applicable for stationary geostatistical models when the grid discretization, in each spatial direction, is uniform in the volume of interest. We also used a structural approach to jointly invert cross-hole electrical resistance and ground-penetrating radar traveltime data in three dimensions. The two models are coupled by assuming, at all points, that the cross product of the gradients of the two models is zero. No petrophysical relationship between electrical conductivity and relative permittivity is assumed but is instead obtained as a by-product of the inversion. The approach has been applied to data collected in a U.K. sandstone aquifer in order to improve characterization of the vadose zone hydrostratigraphy. By analyzing scatterplots of electrical conductivity versus relative permittivity together with petrophysical models a zonation could be obtained with corresponding estimates of the electrical formation factor, the water content, and the effective grain radius of the sediments. The approach provides greater insight into the hydrogeological characteristics of the subsurface than by using conventional geophysical inversion methods

    Induced Polarization as a Tool to Assess Alteration in Geothermal Systems: A Review

    No full text
    The mineral alteration patterns in high- to low-temperature geothermal fields affect the induced polarization (electrical conductivity and chargeability) properties of volcanic rocks. Indeed, these properties are sensitive to the cation exchange capacity and the porosity of the rock, which are both dependent on the alteration path, temperature, and depth of burial. Therefore induced polarization tomography appears as a powerful non-intrusive geophysical method to investigate alteration patterns in geothermal fields. Among clay minerals, the production of smectite through prograde reactions occurs progressively in volcanic rocks up to 220 °C. The presence of smectite dominates the induced polarization response of the volcanic rocks because of its very large cation exchange capacity. It follows that induced polarization can be used as a non-intrusive temperature proxy up to 220 °C for both active and inactive geothermal fields, recording the highest temperatures reached in the past. The influence of magnetite and pyrite, two semi-conductors, also has a strong influence regarding the induced polarization properties of volcanic rocks. Various field examples are discussed to show how induced polarization can be used to image volcanic conduits and smectite-rich clay caps in volcanic areas for both stratovolcanoes and shield volcanoes

    USE OF ELECTRICAL METHODS TO CHARACTERIZE PREFERENTIAL GROUND WATER FLOW IN ENBANKMENT DAMS

    No full text
    International audienc
    corecore